One-step synthesis of graphene/polypyrrole nanofiber composites as cathode material for a biocompatible zinc/polymer battery.

نویسندگان

  • Sha Li
  • Kewei Shu
  • Chen Zhao
  • Caiyun Wang
  • Zaiping Guo
  • Gordon Wallace
  • Hua Kun Liu
چکیده

The significance of developing implantable, biocompatible, miniature power sources operated in a low current range has become manifest in recent years to meet the demands of the fast-growing market for biomedical microdevices. In this work, we focus on developing high-performance cathode material for biocompatible zinc/polymer batteries utilizing biofluids as electrolyte. Conductive polymers and graphene are generally considered to be biocompatible and suitable for bioengineering applications. To harness the high electrical conductivity of graphene and the redox capability of polypyrrole (PPy), a polypyrrole fiber/graphene composite has been synthesized via a simple one-step route. This composite is highly conductive (141 S cm(-1)) and has a large specific surface area (561 m(2) g(-1)). It performs more effectively as the cathode material than pure polypyrrole fibers. The battery constructed with PPy fiber/reduced graphene oxide cathode and Zn anode delivered an energy density of 264 mWh g(-1) in 0.1 M phosphate-buffer saline.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biocompatible ionic liquid-biopolymer electrolyte-enabled thin and compact magnesium-air batteries.

With the surge of interest in miniaturized implanted medical devices (IMDs), implantable power sources with small dimensions and biocompatibility are in high demand. Implanted battery/supercapacitor devices are commonly packaged within a case that occupies a large volume, making miniaturization difficult. In this study, we demonstrate a polymer electrolyte-enabled biocompatible magnesium-air ba...

متن کامل

Fabrication and Electrochemical Behavior of Monoclinic CuO and CuO/Graphite Composite Nanoparticles as Cathode in an Alkaline Zn-CuO Battery

Electrochemical properties of various rock-shaped-CuO/graphite (G) composites and monoclinic structure CuO nanoparticles as the cathode versus a zinc plate as the anode in a 4M NaOH electrolyte were elucidated by electrochemical impedance spectroscopy (EIS) and chronopotentiometry (CP) in a two electrode configuration cell. Various values of G 9, 16 and 28 wt% were prepared and studied as catho...

متن کامل

Micrometric Growth of V2O5Hexagonal Nano-plates as an Active Material for Lithium Ion Battery Cathode Electrode

This manuscript reports the synthesis of V2O5 nanostructures using reflux method, without using additives such as surface reactants. The influence of reaction parameters like temperature and concentration on the growth of nanostructures have been investigated. It has been observed that the nanostructures are formed with a hexagonal nano-plate morphology, grown from a common core. The diameter o...

متن کامل

Facile Synthesis of Polypyrrole/Graphene Nanosheet-based Nanocomposites as Catalyst Support for Fuel Cells

The integration of catalyst metals into the graphene-based composites can be a new way to ensure thermal and electronic conductivities of the catalyst support materials in polymer electrolyte membrane fuel cells. In this work, graphene nanosheets were synthesized via a mild and safer chemical route including three major steps: graphite oxidation, ultrasonic treatment and chemical reduction. The...

متن کامل

Electrically conductive polymers and composites for biomedical applications

Electrically conductive polymeric materials have recently attracted considerable interest from academic and industrial researchers to explore their potential in biomedical applications such as in biosensors, drug delivery systems, biomedical implants and tissue engineering. Conventional conductive homopolymers such as polypyrrole and PEDOT show promising conductivity for these applications, how...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 6 19  شماره 

صفحات  -

تاریخ انتشار 2014